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Abstract: This article deals with finite element method for
the analysis of antisymmetric angle-ply laminated com-
posite hypar shells (hyperbolic paraboloid bounded by
straight edges) that applies an eight-noded isoparametric
shell element and a three-noded beam element to study
themode-frequency analysis of stiffened shell with cutout.
Two-, 4-, and 10-layered antisymmetric angle-ply lami-
nations with different lamination angles are considered.
Among these, 10-layer antisymmetric angle-ply shells are
considered for elaborate study. The shells have different
boundary conditions along its four edges. The formulation
is based on thefirst-order shear deformation theory. The re-
ducedmethod of eigen value solution is chosen for the un-
damped free vibration analysis. The first five modes of nat-
ural frequency are presented. The numerical studies are
conducted to determine the effects of width-to-thickness
ratio (b/h), degree of orthotropy (E11/E22), and fiber orien-
tation angle (θ) on the nondimensional natural frequency.
The results reveal that free vibration behavior mainly de-
pends on the number of boundary constraints rather than
other parametric variations such as change infiber orienta-
tion angle and increase in degree of orthotropy and width-
to-thickness ratio.
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1 Introduction
Laminated composite shells now constitute a large per-
centage of structures including aerospace, marine, and
automotive structural components. Structural engineers
have already picked up laminated composite hypar shells
(hyperbolic paraboloid bounded by straight edges) as roof-
ing units because these can cover large column-free areas
with reduced deadweight. This class of shells has only the
radius of cross curvature that is unique to this shell form.
Roof structures are sometimes provided with cutout to al-
low the entry of light, venting and to provide the accessibil-
ity of parts of the structures, and also to alter the resonant
frequency. Shells with cutout stiffened along the margin
are an efficient way to enhance the stiffness of the struc-
ture without adding much mass. These stiffeners slightly
increase the overall weight of the structure but have pos-
itive effect on the structural strength and stability. So to
apprehend the laminated composite stiffened hypar shells
with cutout and to use this shell form efficiently, its char-
acteristics under vibrationneed tobe explored comprehen-
sively.

The subject of laminated shells has attracted several
researchers during the past decade. Considerable atten-
tion has been paid to dynamic analyses, including free vi-
bration, impact, transient, shock, etc. From the review of
literature, it is observed that shell research has been con-
ducted with emphasis on complicating effects in material
such as damping and piezoelectric behavior and compli-
cated structures such as stiffened shells with cutout with
various boundary conditions. Applications of various shell
theories such as classical, shear deformation, 3D, and non-
linear for various shell geometries have received exten-
sive attention from scholars round the globe [1–8]. Some
studies used higher order shell theories [9–16], whereas
others [17–23] considered finite element approach based
on the first-order shear deformation theory to study the
free vibration aspects of stiffened shell panels of different
forms, that is, cylindrical, elliptic paraboloid, hyperbolic
paraboloid, hypar, conoid, and spherical shells in the pres-
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ence of cutout. But the analysis of stiffened shells with
cutout for higher modes is scanty in the literature. Some
studies [24, 25] also reported the mode frequency analy-
sis of laminated spherical and cylindrical shells. However,
the analysis of stiffened hypar shellswith cutout for higher
modes is yet to be reported in literature. Hence, an attempt
has beenmade in the present article to provide some infor-
mation about the effects of width-to-thickness ratio (b/h),
degree of orthotropy (E11/E22), andfiber orientation (θ) on
the nondimensional natural frequency for antisymmetric
angle-ply hypar shells with 10-layer laminates in the pres-
ence of cutout and stiffeners for different practical bound-
ary conditions.

2 Mathematical Formulation
A laminated composite hypar shell of uniform thickness h
(Figure 1) and twist radius of curvature Rxy is considered.
The shell thicknessmay consist of any number of thin lam-
inae each of which may be arbitrarily oriented at an angle
θ with reference to the X-axis of the coordinate system. An
eight-noded, curved, quadratic, isoparametric, finite ele-
ment (Figure 2a) is used. The five degrees of freedom taken
into consideration at each node include two in-plane and
one transverse displacement and two rotations about the
X- and Y-axes. The strain–displacement and constitutive
relationships together with the systematic development of
stiffnessmatrix for the shell element has been reported ear-
lier [7] and the same is used in the present case as well.

Figure 1: Surface of a skewed hypar shell with cutout

Three-noded isoparametric beam elements (Figure 2b)
are used to model the stiffeners, which are taken to run
only along the boundaries of the shell elements. In the

Figure 2: (a) Eight-noded shell element. (b) Three-noded stiffener
element: (i) X-stiffener and (ii) Y -stiffener

stiffener element, each node has four degrees of free-
dom, that is, usx, wsx, αsx, and βsx for X-stiffener and vsy,
wsy, αsy, and βsy for Y-stiffener. The generalized force–
displacement relation of stiffeners can be expressed as fol-
lows (the notations have been defined in Appendix A):

X − stiffener : {Fsx} = [Dsx] {εsx} (1)
= [Dsx] [Bsx] {δsxi} ;
Y − stiffener: {Fsy} = [Dsy] {εsy} = [Dsy] [Bsy]

{︀
δsyi

}︀
where

{Fsx} =
[︁
Nsxx Msxx Tsxx Qsxxz

]︁T
;

{εsx} =
[︁
usx.x αsx.x βsx.x (αsx + wsx.x)

]︁T
and

{Fsy} =
[︁
Nsyy Msyy Tsyy Qsyyz

]︁T
;

{εsy} =
[︁
vsy.y βsy.y αsy.y (βsy + wsy.y)

]︁T
.

Elasticity matrices are expressed as follows:

[Dsx]

=

⎡⎢⎢⎢⎣
A11bsx B′11bsx B′12bsx 0
B′11bsx D′

11bsx D′
12bsx 0

B′12bsx D′
12bsx 1

6 (Q44 + Q66) dsxb3sx 0
0 0 0 bsxS11

⎤⎥⎥⎥⎦

[Dsy]

=

⎡⎢⎢⎢⎣
A22bsy B′22bsy B′12bsy 0
B′22bsy 1

6 (Q44 + Q66)bsy D′
12bsy 0

B′12bsy D′
12bsy D′

11dsyb3sy 0
0 0 0 bsyS22

⎤⎥⎥⎥⎦ ,

where
D′
ij = Dij + 2eBij + e2Aij (2)
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and Aij, Bij, Dij, and Sij are explained in an earlier paper
[7].

Here the shear correction factor is takenas 5/6. The sec-
tional parameters are calculated with respect to the mid-
surface of the shell by which the effect of eccentricities of
stiffeners is automatically included. The element stiffness
matrices are of the following forms.

for X − stiffener : [Kxe] =
∫︁

[Bsx]T [Dsx] [Bsx] dx; (3)

for Y − stiffener : [Kye] =
∫︁

[Bsy]T [Dsy] [Bsy] dy.

The integrals are converted to isoparametric coordi-
nates and are carried out by 2 point Gauss quadrature. Fi-
nally, the element stiffness matrix of the stiffened shell is
obtained by appropriate matching of the nodes of the stiff-
ener and shell elements through the connectivity matrix
and is written as follows:

[Ke] = [Kshe] + [Kxe] + [Kye] (4)

The element stiffness matrices are assembled to get the
global matrices.

The elementmassmatrix for shell is obtained from the
following integral equation:

[Me] = T [P] [N] dxdy (5)

where

[N] =
8∑︁
i=1

⎡⎢⎢⎢⎢⎢⎣
Ni 0 0 0 0
0 Ni 0 0 0
0 0 Ni 0 0
0 0 0 Ni 0
0 0 0 0 Ni

⎤⎥⎥⎥⎥⎥⎦,

[P] =
8∑︁
i=1

⎡⎢⎢⎢⎢⎢⎣
P 0 0 0 0
0 P 0 0 0
0 0 P 0 0
0 0 0 I 0
0 0 0 0 I

⎤⎥⎥⎥⎥⎥⎦,

in which

P =
np∑︁
k=1

zk∫︁
zk−1

ρdz and I =
np∑︁
k=1

zk∫︁
zk−1

zρdz (6)

Element mass matrix for the stiffener element is

[Msx] = T [P] [N] dx for X−stiffener (7)

and [Msy] = T [P] [N] dy for Y−stiffener.

Here, [N] is a 3 × 3 diagonal matrix.

[P] =

3∑︁
i=1

⎡⎢⎢⎢⎣
ρ.bsxdsx 0 0 0

0 ρ.bsxdsx 0 0
0 0 ρ.bsxd2sx/12 0
0 0 0 ρ(bsx .d3sx + b3sx .dsx)/12

⎤⎥⎥⎥⎦
for X − stiffener,

[P] =

3∑︁
i=1

⎡⎢⎢⎢⎣
ρ.bsydsy 0 0 0

0 ρ.bsydsy 0 0
0 0 ρ.bsyd2sy/12 0
0 0 0 ρ(bsy .d3sy + b3sy .dsy)/12

⎤⎥⎥⎥⎦
for Y−stiffener.

The mass matrix of the stiffened shell element is the
sum of thematrices of the shell and the stiffeners matched
at the appropriate nodes.

[Me] = [Mshe] + [Mxe] + [Mye] (8)

The elementmassmatrices are assembled to get the global
matrices.

In regards to the modeling of the cutout, the code de-
veloped can take the position and size of cutout as input.
The program is capable of generating nonuniformal finite
elementmeshall over the shell surface. So the element size
is gradually decreased near the cutout margins. One such
typicalmesh arrangement is shown in Figure 3. Such finite
element mesh is redefined in steps and a particular grid is
chosen to obtain the fundamental frequency when the re-
sult does not improve by more than 1% on further refining.
Convergence of results is ensured in all the problems taken
up here.

Finally, the free vibration analysis involves the deter-
mination of natural frequencies from the condition⃒⃒⃒

[K] − ω2 [M]
⃒⃒⃒
= 0 (9)

This is a generalized eigen value problem and is solved by
the subspace iteration algorithm.

3 Numerical Examples
Problems are solved with two different objectives. Bench-
mark problems are used to check the suitability of the
present approach and a number of authors’ own problems
are taken up to assess the mode–frequency behavior of
antisymmetric angle-ply composite stiffened hypar shells
with cutout.

The accuracy of the present formulation is first vali-
dated by comparing the results of the following problems
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Table 1: Natural frequencies (Hz) of centrally stiffened clamped square plate

Mode no. Mukherjee and Mukhopadhyay [26] Nayak and Bandyopadhyay [4] Present method
N8 (FEM) N9 (FEM)

1 711.8 725.2 725.1 733
a = b = 0.2032 m; thickness = 0.0013716 m; stiffener depth = 0.0127 m; stiffener width = 0.00635 m; stiffener eccentric at bottom. Material
property: E = 6.87 × 1010 N/m2, ν = 0.29, ρ = 2,823 kg/m3

Table 2: Nondimensional fundamental frequencies (ω) for hypar shells (lamination (0/90)4) with concentric cutouts

a′/a Chakravorty et al. [1]) Present finite element model
Simply Clamped Simply supported Clamped

supported 8 × 8 10 × 10 12 × 12 8 × 8 10 × 10 12 × 12
0.0 50.829 111.600 50.573 50.821 50.825 111.445 111.592 111.612
0.1 50.769 110.166 50.679 50.758 50.779 109.987 110.057 110.233
0.2 50.434 105.464 50.323 50.421 50.400 105.265 105.444 105.443
0.3 49.165 101.350 49.045 49.157 49.178 101.110 101.340 101.490
0.4 47.244 97.987 47.132 47.242 47.141 97.670 97.985 97.991

a/b = 1; a/h = 100; a′/b′ = 1; c/a = 0.2; E11/E22 = 25; G23 = 0.2 E22; G13 = G12 = 0.5 E22; ν12 = ν21 = 0.25.

Figure 3: Typical 10 × 10 nonuniformal mesh arrangement drawn to
scale

available in the existing literature. The results presented in
Table 1 show that the agreement of the present results with
the earlier ones [4, 26] is excellent and the correctness of
the stiffener formulation is established. Free vibration of
simply supported and clamped hypar shell having (0/90)4
lamination and with cutouts is also considered. The fun-
damental frequencies of hypar shell with cutout obtained
by the present method agree well with those reported by
Chakravorty et al. [1], which is evident from Table 2, es-
tablishing the correctness of the cutout formulation. Thus
it is evident that the finite element model proposed here
can successfully analyze vibration problems of stiffened
skewedhypar composite shellswith cutout that is reflected
by a close agreement of the present results with bench-
mark ones.

Antisymmetric angle-ply laminated composite stiff-
ened hypar shells with cutout are analyzed to study the be-
havior of the shell under free vibration at higher mode for

different parametric variation. The cutouts are placed con-
centrically on the shell surface. The stiffeners are placed
along the cutout periphery and extended up to the edge
of the shell. The material and geometric properties of the
shells are a/b = 1, a/h = 100, a′/b′ = 1, a′/a = 0.2, c/a = 0.2,
E11/E22 = 25, G23 = 0.2 E22, G13 = G12 = 0.5 E22, ν12 = ν21
= 0.25, and ρ = 100 N-s2/m4 unless otherwise specified.

Seven laminated stacking sequences, namely, an-
tisymmetric angle-ply (0/−0)10, (15/−15)10, (30/−30)10,
(45/−45)10, (60/−60)10, (75/−75)10, and (90/−90)10 are con-
sidered. Numerical analyses are performed to determine
the effect of fiber orientation angle (θ = 0∘, 15∘, 30∘, 45∘,
60∘, 75∘, and 90∘), degree of orthotropy (E11/E22 = 5, 10,
20, 25, 30, 40, and 50), and width-to-thickness ratio (b/h =
10, 20, 50, 100) on nondimensional natural frequency.

The different boundary conditions that are used in the
present analysis are CSCS, CSSC, FCCF, FCFC, FSFS and
FSSF. The boundary conditions are designated as: C for
clamped, S for simply supported, and F for free edges. The
four edges are considered in an anticlockwise order start-
ing from the edge x = 0. For example, a shell with CSCS
boundary is clamped along x = 0, simply supported along
y = 0, clamped along x = a, and simply supported along y
= b.

4 Results and Discussion
Table 3 presents the nondimensional fundamental fre-
quency (the first-mode frequencies) for 2-, 4-, and 10-
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Table 3: Nondimensional fundamental frequency of antisymmetric
angle-ply multilayered laminated composite stiffened hypar shell
with cutout

Angle-ply Boundary
Condition

Two
Layers

Four
Layers

Ten
Layers

0∘

15∘

30∘

45∘

60∘

75∘

90∘

CSCS 6.356
6.056
6.787
7.825
8.914
10.196
13.254*

6.356
7.467
9.399
11.356
12.622
12.919
13.254*

6.356
7.892
10.121
12.324
13.631
13.642*

13.254
0∘

15∘

30∘

45∘

60∘

75∘

90∘

CSSC 13.017
12.449
12.607
13.356*

12.526
12.402
13.008

13.016
13.979
14.954
15.369*

14.928
13.998
13.008

13.016
14.307
15.547
15.799*

15.549
14.362
13.008

0∘

15∘

30∘

45∘

60∘

75∘

90∘

FCCF 6.539
6.011
6.263
6.233
6.196
6.000
6.548*

6.539
6.855
7.327*

7.161
7.212
6.806
6.548

6.539
7.082
7.555*

7.377
7.436
7.024
6.548

0∘

15∘

30∘

45∘

60∘

75∘

90∘

FCFC 11.707*

8.031
5.875
4.283
3.147
2.674
2.604

11.706*

10.746
8.628
6.033
3.795
2.741
2.604

11.708*

11.394
9.246
6.435
3.958
2.759
2.604

0∘

15∘

30∘

45∘

60∘

75∘

90∘

FSFS 4.367*

4.041
3.974
2.941
2.194
1.860
1.806

4.367
4.732
4.984*

4.038
2.583
1.905
1.806

4.367
4.882
5.204*

4.293
2.679
1.918
1.806

0∘

15∘

30∘

45∘

60∘

75∘

90∘

FSSF 3.628*

3.310
3.349
3.290
3.304
3.268
3.560

3.628
3.945
4.190*

4.166
4.104
3.860
3.560

3.628
4.127
4.403*

4.380
4.307
4.027
3.560

layered antisymmetric angle-ply laminated composite stiff-
ened hypar shells with cutout with the fiber orientation
angle varying between 0∘ and 90∘. In each column, the
maximum value is indicated by an asterisk. It is observed
that for the two-layered hypar shell, maximum fundamen-
tal frequency occurs at the lamination angle of either 0∘ or
90∘ except for CSSC shell. For CSSC shell, the maximum
fundamental frequency occurs at the lamination angle of
45∘. It is also observed that for all the boundary conditions
considered here, 4- and 10-layered laminates exhibit the
maximum value of frequency parameter for the same lam-
ination angle., The maximum fundamental frequency oc-
curs at the lamination angle, θ, of 75∘ and45∘, respectively,
for CSCS and CSSC shells; at θ = 0∘ for FCFC shells; and at
θ = 30∘ for FCCF, FSFS and FSSF shells. This observation
is valid for both 4- and 10-layered hypar shells. According
to the number of boundary constraints, boundary condi-
tions can be grouped as CSCS & CSSC; FCCF & FCFC; and
FSFS&FSSF. For all the layers consideredhere, as thenum-
ber of boundary constraint increases, the fundamental fre-
quency increases. Thus CSCS & CSSC perform better than
FCCF & FCFC, which in turn perform better than FSFS &
FSSF shells. It is also observed from Table 3 that with the
increase in layer, the frequency parameter increases. The
increments are sharper from 2 to 4 layers compared to 4
to 10 layers, in which a mild increase in the frequency pa-
rameter is observed. As the 10-layered laminates exhibit
best performance, so far the fundamental frequency is con-
cerned, they are considered for further studies.

4.1 Effect of fiber orientation

The total thickness of the laminate was maintained con-
stant, and the number of layers is 10. Figure 4 shows
the variation of nondimensional frequency with boundary

Figure 4: Variation of nondimensional fundamental frequency with
the fiber orientation angle
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conditions and lamination angle. Seven laminate stack-
ing sequences, namely, antisymmetric angle-ply (0/−0)10,
(15/−15)10, (30/−30)10, (45/−45)10, (60/−60)10, (75/−75)10,
and (90/−90)10 are considered. The nondimensional fre-
quency parameter for the first, second, third, fourth, and
fifth mode increases with an increase in the fiber orienta-
tion angle from 0∘ to 45∘ for CSSC, FCCF, and FSFS shells,
but further increase in the lamination angle decreases
the fundamental frequency. Similarly, for CSCS shell, the
fundamental frequency increases up to 60∘ and then de-
creases. Again for FCFC shell, fundamental frequency de-
creases with an increase in the lamination angle. On the
other hand for FSSF shell, the change in the frequency
with change in lamination angle is very insignificant. For
all the laminations and boundary conditions considered
here, frequency parameter increases from the firstmode to
the fifth mode except in few cases in which frequency pa-
rameter is almost the same in two consecutive modes. The
lamination and boundary conditions interact in a complex
manner so that no unified conclusion can be reached. The
reason behind this is that the frequencies depend on the
contribution made by extensional stiffness, coupling stiff-
ness, and bending stiffness terms in addition to the bound-
ary conditions and panel geometry, among others. How-
ever, for all the lamination angles considered here, CSCS&
CSSC perform better than FCCF & FCFC, which in turn per-
form better than FSFS & FSSF. So it can be concluded that
the number of boundary constraints plays a great role for
free vibration. CSSC performs better than CSCS for lower
lamination angles, but for higher lamination angle, CSCS
performs better than CSSC. But reverse trend is observed
when free edges are involved. FCFC and FSFS perform bet-
ter in lower lamination angle but FCCF and FSSF perform
better in higher lamination angle.

4.2 Effect of material anisotropy

The effects of material anisotropy on the frequencies of 10-
layer antisymmetric angle-ply square shells with fiber ori-
entation angles of 0∘, 15∘, 30∘, 45∘, 60∘, 75∘, and 90∘ for
CSCS, CSSC, FCCF, FCFC, FSFS, and FSSF edge boundary
conditions, respectively, are demonstrated in Figures 5–11.
These results are obtained by keeping the material prop-

erties as constant, that is, G12/E22 = 0.5 and ν12 = 0.25,
and changing the E11/E22 ratio. As observed from these
figures, as the degree of orthotropy increases, the first, sec-
ond, third, fourth, andfifth frequency parameter increases
monotonically for all the laminations and boundary con-
ditions considered here. These increments are sharper for
CSSC shell. FCFC shell shows better performance for lower

Figure 5: Variation of nondimensional fundamental frequency with
material anisotropy for (0/−0)10 lamination

Figure 6: Variation of nondimensional fundamental frequency with
material anisotropy for (15/−15)10 lamination

Figure 7: Variation of nondimensional fundamental frequency with
material anisotropy for (30/−30)10 lamination
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Figure 8: Variation of nondimensional fundamental frequency with
material anisotropy for (45/−45)10 lamination

Figure 9: Variation of non-dimensional fundamental frequency with
material anisotropy for (60/−60)10 lamination

Figure 10: Variation of nondimensional fundamental frequency with
material anisotropy for (75/−75)10 lamination

Figure 11: Variation of nondimensional fundamental frequency with
material anisotropy for (90/−90)10 lamination

lamination angle, but with the increase in the lamination
angle, the performance of CSCS shell is better. For other
boundary conditions, mild increase in the frequency pa-
rameter is observed. It is also observed that for almost all
the cases, the frequency parameter increases from the first
mode to the fifth mode. In a few cases, the frequency re-
mains almost same between two consecutive modes.

4.3 Effect of width-to-thickness ratio

If the width-to-thickness ratio is increasedwhilemaintain-
ing the width of the laminate a constant and the number
of layers being fixed at 10, the thickness of the shell is
decreased. Figures 12–18 show the variation of the nondi-
mensional frequency for the first, second, third, fourth
and fifth mode with variation of width-to-thickness ratio
and boundary conditions for various values of lamination
angles. Ten-layer antisymmetric angle-ply laminates with

Figure 12: Variation of nondimensional fundamental frequency with
b/h ratio for (0/−0)10 lamination
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varying fiber orientation angle, such as 0∘, 15∘, 30∘, 45∘,
60∘, 75∘, and 90∘, having different width-to-thickness ra-
tios (b/h = 10, 20, 50, 100) are analyzed. It is evident from
Figures 12–18 that with the increase in width-to-thickness

Figure 13: Variation of non-dimensional fundamental frequency with
b/h ratio for (15/−15)10 lamination

Figure 14: Variation of nondimensional fundamental frequency with
b/h ratio for (30/−30)10 lamination

Figure 15: Variation of nondimensional fundamental frequency with
b/h ratio for (45/−45)10 lamination

ratio, the dimensionless frequencies decrease. This de-
crease in frequency is very much significant in case of
CSSC, CSCS, and FCFC shells. For other boundary condi-
tions, this decrease in dimensionless frequency is signifi-

Figure 16: Variation of nondimensional fundamental frequency with
b/h ratio for (60/−60)10 lamination

Figure 17: Variation of nondimensional fundamental frequency with
b/h ratio for (75/−75)10 lamination

Figure 18: Variation of nondimensional fundamental frequency with
b/h ratio for (90/−90)10 lamination
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cant at higher value of width-to-thickness ratio. These are
true for all the fivemodes.Here also for all the combination
of stacking sequences, boundary conditions, andwidth-to-
thickness ratios, the nondimensional frequency increases
from the first mode to the fifth mode except few cases.

5 Conclusions
In this article, analysis of antisymmetric angle-ply lami-
nated composite stiffened hypar shell with cutout is pre-
sented for differentmodes of vibrationusingfinite element
method based on the first-order shear deformation theory.
It can be concluded by analyzing the results that as the
number of layers increase, the fundamental frequency in-
creases. With the increase in lamination angle, nondimen-
sional natural frequency may increase or decrease, but
from the first mode to the fifth mode, natural frequency al-
ways increase or remain same in very few cases. The first,
second, third, fourth, and fifth nondimensional frequency
parameter increases monotonically for all the laminations
and boundary conditions as the degree of orthotropy in-
creases. With the increase in width-to-thickness ratios, di-
mensionless frequencies decrease from the first mode to
the fifthmode. Free vibration behavior mainly depends on
the number of boundary constraints whatever may be the
other parametric variations such as change in fiber orien-
tation angle and increase in the degree of orthotropy and
width-to-thickness ratio.

Nomenclature
ν12, ν21 Poisson’s ratios
ω natural frequency
ω nondimensional natural frequency =

ω a2
(︀
ρ/E22h2

)︀1/2
ρ density of material
E11, E22 elastic moduli
G12, G13, G23 shear moduli of a lamina with respect to 1,

2 and 3 axes of fiber
αsx , βsx rotational degrees of freedom at each node

of X-stiffener element
αsy , βsy rotational degrees of freedom at each node

of Y-stiffener element
δsxi , δsyi nodal displacement of stiffener element
a′, b′ length and width of cutout in plan
Bsx , Bsy strain displacement matrix of stiffener ele-

ment

Msxx , Msyy moment resultants of stiffeners
Nsxx , Nsyy axial force resultants of stiffeners
Qsxxz , Qsyyz transverse shear resultants of stiffeners
Tsxx , Tsyy torsion resultants of stiffeners
a ,b length and width of shell in plan
bsx, bsy width of X and Y stiffeners, respectively
c rise of hypar shell
dsx, dsy depth of X and Y stiffeners, respectively
esx, esy eccentricities of X and Y stiffeners with re-

spect to mid surface of shell
e eccentricity of stiffeners with respect to

mid surface of shell
h shell thickness
np number of plies in a laminate
Rxy radii of cross curvature of hypar shell
usx, wsx axial and transverse translational degrees

of freedom at each node of X-stiffener ele-
ment

vsy, wsy axial and transverse translational degrees
of freedom at each node of Y-stiffener ele-
ment

X, Y, Z global coordinate axes
x, y, z local coordinate axes
zk distance of bottom of the k-th ply frommid-

surface of a laminate
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